home *** CD-ROM | disk | FTP | other *** search
- /* linalg/householdercomplex.c
- *
- * Copyright (C) 2001 Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #include <config.h>
- #include <stdlib.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_vector.h>
- #include <gsl/gsl_matrix.h>
- #include <gsl/gsl_blas.h>
- #include <gsl/gsl_complex_math.h>
-
- #include <gsl/gsl_linalg.h>
-
- gsl_complex
- gsl_linalg_complex_householder_transform (gsl_vector_complex * v)
- {
- /* replace v[0:n-1] with a householder vector (v[0:n-1]) and
- coefficient tau that annihilate v[1:n-1] */
-
- const size_t n = v->size ;
-
- if (n == 1)
- {
- gsl_complex alpha = gsl_vector_complex_get (v, 0) ;
- double absa = gsl_complex_abs (alpha);
- double beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * absa ;
-
- gsl_complex tau;
- GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ;
- GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ;
-
- {
- gsl_complex beta = gsl_complex_rect (beta_r, 0.0);
- gsl_vector_complex_set (v, 0, beta) ;
- }
-
- return tau;
- }
- else
- {
- gsl_complex tau ;
- double beta_r;
-
- gsl_vector_complex_view x = gsl_vector_complex_subvector (v, 1, n - 1) ;
- gsl_complex alpha = gsl_vector_complex_get (v, 0) ;
- double absa = gsl_complex_abs (alpha);
- double xnorm = gsl_blas_dznrm2 (&x.vector);
-
- if (xnorm == 0 && GSL_IMAG(alpha) == 0)
- {
- gsl_complex zero = gsl_complex_rect(0.0, 0.0);
- return zero; /* tau = 0 */
- }
-
- beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * hypot(absa, xnorm) ;
-
- GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ;
- GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ;
-
- {
- gsl_complex amb = gsl_complex_sub_real(alpha, beta_r);
- gsl_complex s = gsl_complex_inverse(amb);
- gsl_blas_zscal (s, &x.vector);
- }
-
- {
- gsl_complex beta = gsl_complex_rect (beta_r, 0.0);
- gsl_vector_complex_set (v, 0, beta) ;
- }
-
- return tau;
- }
- }
-
- int
- gsl_linalg_complex_householder_hm (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A)
- {
- /* applies a householder transformation v,tau to matrix m */
-
- size_t i, j;
-
- if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
- {
- return GSL_SUCCESS;
- }
-
- /* w = (v' A)^T */
-
- for (j = 0; j < A->size2; j++)
- {
- gsl_complex tauwj;
- gsl_complex wj = gsl_matrix_complex_get(A,0,j);
-
- for (i = 1; i < A->size1; i++) /* note, computed for v(0) = 1 above */
- {
- gsl_complex Aij = gsl_matrix_complex_get(A,i,j);
- gsl_complex vi = gsl_vector_complex_get(v,i);
- gsl_complex Av = gsl_complex_mul (Aij, gsl_complex_conjugate(vi));
- wj = gsl_complex_add (wj, Av);
- }
-
- tauwj = gsl_complex_mul (tau, wj);
-
- /* A = A - v w^T */
-
- {
- gsl_complex A0j = gsl_matrix_complex_get (A, 0, j);
- gsl_complex Atw = gsl_complex_sub (A0j, tauwj);
- /* store A0j - tau * wj */
- gsl_matrix_complex_set (A, 0, j, Atw);
- }
-
- for (i = 1; i < A->size1; i++)
- {
- gsl_complex vi = gsl_vector_complex_get (v, i);
- gsl_complex tauvw = gsl_complex_mul(vi, tauwj);
- gsl_complex Aij = gsl_matrix_complex_get (A, i, j);
- gsl_complex Atwv = gsl_complex_sub (Aij, tauvw);
- /* store Aij - tau * vi * wj */
- gsl_matrix_complex_set (A, i, j, Atwv);
- }
- }
-
- return GSL_SUCCESS;
- }
-